Е.А. Палкин, А.А. Петрович

СПЕЦИАЛЬНЫЕ АСИМПТОТИКИ ФУНКЦИЙ ПАРАБОЛИЧЕСКОГО ЦИЛИНДРА (ФУНКЦИЙ ВЕБЕРА – ЭРМИТА) С БОЛЬШИМ ПАРАМЕТРОМ

Предложены асимптотические разложения функций параболического цилиндра, интегральные представления которых содержат большой параметр как в экспоненциальном ядре, так и в предэкспоненциальном множителе интегранты. Рассмотрены области значений аргументов, при которых возникают различные особенности, прямым следствием которых является тип асимптотических разложений.

Ключевые слова: функции параболического цилиндра, большой параметр, асимптотические разложения, интегральные представления, параметрические множества особых точек, слияние особенностей, контур интегрирования.

E.A. Palkin, A.A. Petrovich

SPECIAL ASYMPTOTICS OF PARABOLIC CYLINDER FUNCTIONS (WEBER – HERMITE FUNCTIONS) HAVING LARGE PARAMETER

The uniform asymptotic expansions are proposed for the parabolic cylinder functions having integrand large parameter in exponential core and in preexponential coefficient. The different regions of arguments variations are considered where specific integral peculiarities appear resulting to the specific types of asymptotics.

Keywords: parabolic cylinder functions, large parameter, asymptotic expansions, integral representations, parametric varieties of singular points, singularities coalescence, integration circuit.

І. Введение

Функции параболического цилиндра (функции Вебера – Эрмита) с большим параметром вида

$$D_{\nu,\Lambda}(x) = \int_{\mathcal{V}} \exp\left\{i\Lambda\left(t^2 + tx\right)\right\} \cdot t^{i\Lambda\nu} \cdot t^{-1/2} dt$$
(1)

возникают при рассмотрении решений задач квантовой физики, волновых уравнений электродинамики неоднородных сред и других задачах, связанных с нахождением приближенных решений на основе имеющейся информации о соотношении характерных масштабов вариации переменных коэффициентов уравнений и масштабов изменения самого решения. Данное соотношение характеризует параметр Λ , пропорциональный отношению этих масштабов.

Представление функций параболического цилиндра в форме (1) выделяет в явном виде специальный вид зависимости от большого параметра Λ и формально отличается от классических интегральных представлений лишь масштабированием переменной t (в комплексной плоскости контура γ) и, соответственно, переменных x и v [1–3]. Однако при рассмотрении асимптотических разложений (при $\Lambda >> 1$) присутствие большого параметра во внеэкспоненциальной части интегрального представления

[©] Палкин Е.А., Петрович А.А., 2018.

(1), или, что эквивалентно, в логарифмическом члене «фазовой функции» (см. ниже), существенно отличает данное интегральное представление от других интегралов с большим параметром [4–7].

Важным вопросом при анализе выражений такого рода является корректное построение асимптотических разложений интеграла (1) по параметру Λ^{-1} ($\Lambda >> 1$), равномерных по x и v. В зависимости от значений переменных x и v можно выделить области с различным видом асимптотик, оценивающих функцию (1). Такие асимптотики, как неравномерные, не затрагивающие особенности интеграла (1), так и равномерные, учитывающие особенности в выделенных областях, соответствуют специфической структуре особенностей интеграла (1) и отражают не только математическую суть проблемы, но и дают корректную интерпретацию решений, содержащих функции параболического цилиндра, для многих прикладных задач. Присутствие большого параметра при аргументе v требует рассмотрения в качестве особенностей как вырожденные стационарные точки фазовой функции и точки ветвления, так и логарифмическую особенность.

II. Типы особых точек и построение перевальных контуров

Следуя идеологии работ [4–8], в [9] были предложены различные типы равномерных асимптотических разложений интеграла (1) для различных областей значений аргументов x и v. Опираясь на эти идеи, построим и проанализируем равномерные асимптотические разложения интегрального представления (1). Для удобства в формализации дальнейших построений вместо (1) будем рассматривать следующие эквивалентные представления функции $D_{v,A}(x)$:

$$D^{\pm}_{\nu,\Lambda}(x) = \int_{x^{\pm}} \exp\left\{ i\Lambda \left(t^2 + tx + \nu \ln t \right) \right\} \cdot t^{-1/2} dt , \qquad (2)$$

где, как и в (1), контур γ^{\pm} определен так, что интеграл (2) сходится при любых (конечных) комплекснозначных *x* и v: начинается в третьем квадранте комплексной плоскости переменной *t* и уходит на бесконечность в первом квадранте, огибая сверху (контур γ^{+}) или снизу (контур γ^{-}) точку «0» (рис. 1). Для выделения регулярной ветви логарифмической функции и функции квадратного корня в плоскости переменной *t* введен разрез от точки «0», не затрагивающий контура γ^{\pm} , а именно: вдоль отрицательной полуоси {Im $t \le 0$, Re t = 0} в случае обхода точки «0» сверху; вдоль положительной полуоси {Im $t \ge 0$, Re t = 0} в случае обхода снизу. Пунктиром на рис. 1 обозначена линия, к которой асимптотически на бесконечности приближаются контуры наискорейшего спуска, соответствующие контуру γ^{\pm} . Выбор контура γ^{\pm} (контур γ^{+} , или контур γ^{-}) определяет особенности интеграла (1), (2), значимые для построения асимптотических разложений.

Рис. 1. Контур интегрирования ү для определения функций $D_{y}(x)$

Выделив явную зависимость от параметра Л и определив фазовую функцию интегранты (2)

$$\Phi = t^2 + tx + v \ln t , \qquad (3)$$

мы находим следующие характеристические точки:

 $-t_{st}$, морсовские (не особые) стационарные точки A_1 фазовой функции (здесь и далее для идентификации типов критических точек фазовой функции мы используем обозначения, принятые в теории катастроф, см., например, [10])

$$t_{st12} = \frac{1}{4} \left(-x \pm \sqrt{x^2 - 8\nu} \right), \ t_{st12} \neq 0,$$
(4)

как решения уравнения:

$$2 \cdot t_{st}^{2} + x + v \frac{1}{t_{st}} = 0;$$
 (5)

 $-t_{st}^{*}$, вырожденные (особые) стационарные точки A_{2} фазовой функции

$$t_{st}^{*} = -\frac{x}{4}, t_{st}^{*} \neq 0,$$
 (6)

возникающие при условии:

$$x^2 = 8v; \tag{7}$$

 $-t_p = 0$, точка полюса (ветвления) порядка 1/2 для предэкспоненциальной функции (амплитудной функции подынтегрального выражения); $-t_{ln} = 0$, точка логарифмической особенности фазовой функции (точку ветвления и логарифмической особенности $t_{ln} = t_p = 0$ будем обозначать единым символом

 $t_p = 0$, а ее особенность – $P_{1/2,\ln}$); – t_{st}^{0} , особая (логполярная) точка слияния одной стационарной точки A_1 и точки $t_p = 0$ (с обозначением $A_1 / P_{1/2,\ln}$) при условии:

$$\mathbf{v} = \mathbf{0}; \tag{8}$$

– центральная особая точка Σ , соответствующая слиянию всех стационарных точек, точки ветвления и точки логарифмической особенности при условии:

$$x = v = 0. \tag{9}$$

Геометрия особых точек (особенностей) интеграла (1), (2) в плоскости действительных переменных х и у представлена на рис. 2. В скобках на рис. 2 указаны особенности, имеющиеся у интегранты (2), но не вносящие вклад в асимптотические разложения при заданном контуре интегрирования (рассмотрен контур γ^+). Анализ структуры особенностей совместно с анализом допустимых трансформаций контура γ^{\pm} позволяет предложить различные равномерные асимптотические представления, справедливые в различных областях пространства $\{x, v\}$.

Согласно работам [4-7], структура равномерных асимптотических разложений определяется типом особенностей интегранты: вырожденные критические точки дают вклад, представляемый специальными функциями волновых катастроф, особенности типа точки ветвления или полюса внеэкспоненциального множителя порождают в асимптотических представлениях члены, содержащие специальные функции краевых катастроф (катастроф с ограничением) с полюсом, или точкой ветвления соответствующего порядка [5; 7; 8]. Что касается логарифмической особенности, то, как мы покажем ниже, она также важна для корректного построения равномерных асимптотических разложений и приводит к необходимости введения специальных функций, содержащих эталонную логарифмическую особенность – это обобщенный интеграл Френеля, или интеграл Бёмера [11]. Следствием введения разреза для выделения регулярных ветвей функций интегранты (2) в комплексной плоскости переменной *t* является различие в асимптотиках интегралов (1), (2) для контуров γ^+ и γ^- .

Рис. 2. Геометрия особенностей интеграла (2)

Далее мы ограничимся анализом асимптотик функции $D^+_{\nu,\Lambda}(x)$ (контур γ^+). Отличия в рассмотрении функции $D^-_{\nu,\Lambda}(x)$ (контур γ^-) не существенны и представляют сведение особенностей интегрального представления (2) для γ^- к соответствующим особенностям для функции $D^+_{\nu,\Lambda}(x)$ при учете возможных деформаций контура γ^- в перевальный контур.

Асимптотические разложения функции $D^{+}_{v,\Lambda}(x)$ при $\Lambda >> 1$ будем рассматривать в соответствии с круговой диаграммой рис. 2, иллюстрирующей связанность различных областей значений переменных x и v, что позволяет проследить переходы между различными особенностями и преобразование перевальных контуров.

Для расчета членов асимптотических разложений требуется трансформировать исходный контур γ^+ (рис. 1) в перевальный контур $\tilde{\gamma}^+$, удовлетворяющий условиям:

1) $\tilde{\gamma}^+$ получается из контура γ^+ непрерывной трансформацией с учетом введенного разреза в комплексной плоскости переменной *t*, и так же как и γ^+ , начинается в третьем квадранте и уходит на бесконечность в первом квадранте, огибая сверху точку «0»;

2) $\tilde{\gamma}^+$ проходит через все стационарные (перевальные) точки, которые допускаются при описанном выше преобразовании;

3) функция

$$-\operatorname{Im}(\Phi(t)) = -2\alpha\beta - x\beta - \nu \cdot \operatorname{arg}(t), \operatorname{rge} t = \alpha + i\beta, \qquad (10)$$

убывает на линиях контура $\tilde{\gamma}^+$, уходящих от стационарных точек.

Последнее условие реализуется, если элементы контура $\tilde{\gamma}^+$ располагаются в областях «невозрастания» функции (10) относительно ее значения в соответствующей стационарной точке. Границы этих областей задаются уравнением:

$$\operatorname{Im}(\Phi(t)) = 2\alpha\beta + x\beta + v \cdot \operatorname{arg}(t) = \operatorname{Im}(\Phi(t_{st})).$$
(11)

В отсутствие разреза комплексной плоскости в качестве элементов перевального контура, обеспечивающих выполнение условия (10), обычно берут контуры наискорейшего спуска. Последние задаются уравнением:

$$\operatorname{Re}(\Phi(t)) = \alpha^{2} - \beta^{2} + x\alpha + v \cdot \ln(\sqrt{\alpha^{2} + \beta^{2}}) = \operatorname{Re}(\Phi(t_{st}))$$
(12)

с выбором решений, обеспечивающих выполнение условия (10). Наличие разреза не всегда позволяет использовать в качестве элементов $\tilde{\gamma}^+$ контуры наискорейшего спуска, что и позволяет говорить о вкладе особой точки $P_{1/2,\ln}$ в асимптотику функции (2). Вид перевальных контуров, построенных для различных областей круговой диаграммы рис. 2, приведен на рис. 3. На данных схемах также указаны: «запрещенные» (где интегранта в (2) экспоненциально растет при $\Lambda \rightarrow +\infty$) и «разрешенные» (где интегранта в (2) экспоненциально убывает при $\Lambda \to +\infty$) области для контура $\tilde{\gamma}^+$, границы которых определены из (11), расположение стационарных точек (4), (6).

Отметим также, что введение разреза и выделение регулярной ветви логарифмической функции и функции квадратного корня определяет функцию (2) с точностью до множителя:

$$D^{\pm}_{\nu,\Lambda}(x) = \tilde{D}^{\pm}_{\nu,\Lambda}(x) \cdot \exp(-2\pi\Lambda\nu n) \cdot (-1)^{n}, \qquad (13)$$

где $\tilde{D}_{v,\Lambda}^{\pm}(x)$ – функция (2), определенная для следующего выбора аргумента комплексной переменной t:

$$-\frac{\pi}{2} < \operatorname{Arg}(t) < \frac{3\pi}{2}.$$
 (14)

Учитывая это, далее мы приводим расчетные формулы асимптотических разложений только для функции $\tilde{D}^+_{y,A}(x)$.

III. Равномерные и неравномерные асимптотические разложения функции $\tilde{D}^{+}_{\nu,\Lambda}(x)$

В соответствии с круговой диаграммой особенностей (рис. 2) и данным выше анализом построения перевальных контуров (рис. 3), нетрудно получить следующие асимптотические формулы для оценки функции $\tilde{D}_{v,\Lambda}^+(x)$ (табл. 1).

В случаях, обозначенных в табл. 1 номерами IV.–V.–VI, используется специальная функция (интеграл Бёмера – Френеля [11]):

$$B^{\pm}(\lambda) = \int_{\gamma^{\pm}} \exp\left\{i\left(\pm t + \lambda \ln(t)\right)\right\} dt.$$
(15)

В (15) контур γ^- для знака «+» проходит, огибая точку «0» снизу, по верхней части комплексной плоскости переменной *t* с разрезом от точки «0» вдоль положительной части мнимой оси, что обеспечивает выделение регулярных ветвей логарифмической и корневой функций и не затрагивает контур γ ; для знака «–» в экспоненциальном ядре контур γ^+ и разрез выбираются симметричными γ^- относительно оси Re *t*.

Отметим эффект влияния разреза на комплексной плоскости переменной t на структуру асимптотических разложений, представленных в табл. 1. При переходе от области VI к областям VII и VIII перевальный контур $\tilde{\gamma}^+$ «скачком» перестраивается при переходе через точку x = 0 так, что стационарная точка $A_{\rm I}^{-}$ (область VIII) оказывается незначимой. Заметим, что для контура $\tilde{\gamma}^-$ такой переход также происходит в этой точке x = 0, v < 0 (область VII). Данный эффект известен как «эффект Стокса» в асимптотических разложениях интегральных представлений [13; 14]. При этом непосредственно на численное значение асимптотического выражения такая перестройка не сказывается, поскольку вклад «потерянной» точки в эффекте Стокса оказывается экспоненциально малым (по Λ). Данное утверждение относится не только к области эффекта Стокса, но и ко всей области значений v < 0. Можно показать, что при изменении параметра v от 0 + C_v до 0 – C_v ($C_v > 0$) аргумент функции Бёмера – Френе-ля переходит от положительных значений к отрицательным, а соответствующее зна-чение этой функции варьируется по параметру Λ от величины ~ $\Lambda^{-1/2}$ до величины ~ $\Lambda^{-1/2} \cdot e^{\Lambda \pi |v|}$ (см. табл. 1: VI, VIII). Поэтому вклад второй морсовской точки A_1^+ (правой на рис. 3, области VI, VII, VIII) становится по отношению к главному члену (вкладу левой морсовской точки A_1^+) экспоненциально малым. При слиянии этой точки с особенностью P_{1/2,ln} и формировании особенности A₁ / P_{1/2,ln} в области IX вклады обеих точек становятся формально соизмеримыми (~ $\Lambda^{-1/2} \cdot e^{-\Lambda \pi \nu}$, $\nu \ge 0$, ситуация VIII, IX, X на рис. 3). Однако в этом случае проведение контура $\tilde{\gamma}^+$ через точку A_1^- уже невозможно из-за наличия разреза (эффект Стокса).

Несмотря на экспоненциально малый (по Λ) вклад второй морсовской точки в областях VI, VII, мы сохранили это слагаемое в табл. 1 (дано в скобках), поскольку оно

Рис. 3. Вид перевальных контуров $\tilde{\gamma}^{*}$ для различных точек круговой диаграммы рис. 2

существенно при описании эффекта надбарьерного отражения, имеющего именно экспоненциально малый характер.

Также укажем важное соотношение между функцией (2) при v = 0 и функцией Т. Пирси [15], использующееся для построения равномерных асимптотических разложений интегральных функций, имеющих вырожденную стационарную точку типа A_{3}^{\pm} (см., например, [4–7]):

$$\tilde{D}_{0,1}^{\pm}(x) = I(0,x) \mp i \cdot I(0,-x),$$
(16)

где

$$I(\lambda_1,\lambda_2) = \int_{\gamma} \exp\left\{i\left(t^4 + \lambda_2 t^2 + \lambda_1 t\right)\right\} dt, \qquad (17)$$

№ области на рис. 2	Тип особен- ности	Границы области в пространстве действительных переменных х и v	Вид асимптотики	Расчетные формулы (для коэффициентов l_{j} до членов порядка $O\left(\Lambda^{-1}\right)$)
1	2	3	4	5
XII.– I.–II.	$A_{_{1}}^{+C}$	$v \ge C_v > 0$ $1 > \frac{x^2}{8y} = \delta \ge 0$	$\begin{split} &\tilde{D}_{\nu,\Lambda}^{+}(x) \approx \\ &\approx e^{i\Theta} \cdot e^{\Gamma} \cdot l_{1} \cdot \Lambda^{-1/2} \end{split}$	$\Theta = \Lambda \left\{ -\frac{x^2}{8} + \frac{v}{2} \left[\ln \frac{v}{2} - 1 \right] \right\}$
				$\Gamma = -\Lambda \left\{ \sqrt{\frac{\nu}{2}} \cdot \sqrt{1 - \delta} \cdot \frac{\lambda}{2} + \nu \cdot \arg(t_{st}) \right\}$
				$l_{1} = \sqrt{\frac{\pi}{2}} \cdot \left(\frac{2}{\nu \cdot (1-\delta)}\right)^{1/4} \cdot \exp\left\{\frac{i}{2}\left[\frac{\pi}{2} - \arg\left(\Phi_{i_{t}}^{*}\right) - \arg\left(t_{s_{t}}\right)\right]\right\},$ rge
				$\arg(t_{st}) = \arg\left(-\frac{x}{4} + i\sqrt{\frac{\nu}{2} \cdot (1-\delta)}\right) = \arccos\left(\frac{(-x)}{2\sqrt{2\nu \cdot (1-\delta)}}\right)$
				$\arg(\Phi_{u}^{*}) = \arg(4(1-\delta) - 4i \cdot \operatorname{sign}(x) \cdot \sqrt{\delta(1-\delta)}) =$
				$=-\mathrm{sign}(x)\cdot\mathrm{arctg}\left(\sqrt{\frac{\delta}{1-\delta}}\right)$
II.– III.–IV.	A_2^+	$ (\nu + \Delta \nu) \ge C_{\nu} > 0; $ $ (x + \Delta x)^2 $	$\tilde{D}_{\nu,\Lambda}^{+}(x) \approx e^{i\Theta} \cdot$	$\Theta \approx \Lambda \left\{ \nu \cdot \left(-\frac{3}{2} + \ln\left(\frac{ x }{4}\right) \right) - \frac{ x }{4} \cdot \Delta x + \ln\left(\frac{ x }{4}\right) \cdot \Delta \nu \right\}$
		$\frac{\overline{8(\nu + \Delta \nu)}}{8(\nu + \Delta \nu)} \sim 1;$ (x + \Delta x) \le - C _x < 0;	$+ V_{\lambda}'(\lambda) l_{1} \cdot \Lambda^{-1/3} + V_{\lambda}'(\lambda) l_{2} \cdot \Lambda^{-2/3} $	$\lambda \approx \Lambda^{2/3} \left(\nu \right)^{-1/3} \cdot \left[\frac{ x }{4} \Delta x + \Delta \nu \right]$
		$\frac{x^2}{8v} = \delta = 1$	(здесь $V(\lambda)$ и $V'_{\lambda}(\lambda)$ – функция	$l_{1} \approx \frac{2\sqrt{\pi}}{ \mathbf{x} ^{1/6}} = \frac{2^{3/4}\sqrt{\pi}}{ \mathbf{v} ^{1/12}}$
			Эйри и её производная, определенные	$l_2 \approx 0$ (расчетные формулы приведены для линейного приближения в Θ и λ «нулевого» приближения
			формулами из [12])	в коэффициентах l_1 и l_2 метода локальной асимптотики [5–7])
IV.	A_1^+	$v \ge C_v > 0$	$\tilde{D}_{\nu,\Lambda}^{+}(x) \approx$	$\left[\frac{x^2}{(-1-\sqrt{1-\delta^{-1}})}\right] +$
	+ A^-	$x \leq -C_x < 0$	$\approx e^{i\Theta_1} \cdot l_1 \cdot \Lambda^{-1/2} +$	$\Theta_1 = \Lambda$ $\begin{bmatrix} 8 \\ -1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$
	1	$\frac{x^2}{8\nu} = \delta > 1$	$+e^{i\Theta_2}\cdot l_2\cdot \Lambda^{-1/2}$	$\left[+\mathbf{v}\cdot\left[\ln\left(\frac{ \mathbf{v} }{4}\cdot\left(1+\sqrt{1-\delta^{-1}}\right)\right)-\frac{1}{2}\right]\right]$
				$\Theta_{2} = \Lambda \left\{ \frac{x^{2}}{8} \cdot \left(-1 + \sqrt{1 - \delta^{-1}} \right) + \right\}$
				$\left[+v \cdot \left\lfloor \ln \left(\frac{ x }{4} \cdot \left(1 - \sqrt{1 - \delta^{-1}} \right) \right) - \frac{1}{2} \right\rfloor \right]$
				$l_1 = \sqrt{\frac{2\pi}{ x }} \cdot \left(\frac{1}{1-\delta^{-1}}\right)^{1/4} \cdot \exp\left(i\frac{\pi}{4}\right)$
				$l_2 = \sqrt{\frac{2\pi}{ x }} \cdot \left(\frac{1}{1-\delta^{-1}}\right)^{1/4} \cdot \exp\left(-i\frac{\pi}{4}\right)$

Вестник Российского нового университета

1	2	3	4	5
IV VVI.	$\begin{array}{c} A_{\rm l}^+ \\ + \\ A_{\rm l}/ \\ P_{\rm l/2,ln} \end{array}$	$v \sim 0;$ $x \leq -C_x < 0;$ $\frac{x^2}{8v} = \delta;$ $\delta > 1$ при $v > 0$	$\tilde{D}_{v,\Lambda}^{+}(x) \approx$ $\approx e^{i\Theta_{1}}B^{-}(\lambda)l_{1}\Lambda^{-1/2} +$ $+ e^{i\Theta_{2}} \cdot l_{2} \cdot \Lambda^{-1/2}$ (здесь $B^{-}(\lambda) -$ функция Бёмера, обобщенный интеграл Френеля [11])	$\begin{split} \Theta_{1} &= \Lambda \begin{cases} \frac{x^{2}}{8} \cdot \left(\sqrt{1-\delta^{-1}}-1\right)+\\ &+\nu \cdot \left[\ln\left(\frac{x}{4\Lambda\nu} \cdot \left(\sqrt{1-\delta^{-1}}-1\right)\right)+\frac{1}{2}\right] \end{cases} \approx\\ &\approx -\Lambda\nu \ln\left(\Lambda x \right) \cdot \left(1+O\left(\delta^{-1}\right)\right)\\ \lambda &= \Lambda\nu\\ \Theta_{2} &= \Lambda \begin{cases} \frac{x^{2}}{8} \cdot \left(-1-\sqrt{1-\delta^{-1}}\right)+\\ &+\nu \cdot \left[\ln\left(\frac{ x }{4} \cdot \left(1+\sqrt{1-\delta^{-1}}\right)\right)-\frac{1}{2}\right] \end{cases}\\ l_{1} &= \frac{1}{\sqrt{ x }}, \ l_{2} &= \sqrt{\frac{2\pi}{ x }} \cdot \left(\frac{1}{1-\delta^{-1}}\right)^{1/4} \cdot \exp\left(i\frac{\pi}{4}\right) \end{split}$
VI VII VIII- IX X.	$\begin{array}{c} A_{l}^{+} \\ + \\ \left(A_{l}^{+} \right) \end{array}$	при $x \le 0, v < 0;$ при $x > 0$ $v < \frac{x^2}{8}$	$\begin{split} \tilde{D}_{\nu,\Lambda}^{\dagger}(x) &\approx \\ &\approx e^{i\Theta_{1}} \cdot e^{\Gamma} \times \\ &\times l_{1} \cdot \Lambda^{-l_{2}^{\prime}} + \\ &+ \begin{pmatrix} e^{i\Theta_{2}} \cdot l_{2} \cdot \Lambda^{-l_{2}^{\prime}} \\ npu \nu < 0, \\ &x \leq 0 \end{pmatrix} \end{split}$	$\begin{split} \Theta_{1} &= \Lambda \begin{cases} -\frac{x}{8} \cdot \left(x + \sqrt{x^{2} - 8\nu}\right) + \\ +\nu \cdot \left[\ln\left(\frac{1}{4} \cdot \left(x + \sqrt{x^{2} - 8\nu}\right)\right) - \frac{1}{2}\right] \right] \\ \Gamma &= -\Lambda \pi \nu \\ \Theta_{2} &= \Lambda \begin{cases} -\frac{x}{8} \cdot \left(x - \sqrt{x^{2} - 8\nu}\right) + \\ +\nu \cdot \left[\ln\left(\frac{1}{4} \cdot \left(\left x - \sqrt{x^{2} - 8\nu}\right \right)\right) - \frac{1}{2}\right] \right] \\ l_{1} &= \frac{\sqrt{2\pi}}{\left(x^{2} - 8\nu\right)^{1/4}} \cdot \exp\left(-i\frac{\pi}{4}\right) \\ l_{2} &= \frac{\sqrt{2\pi}}{\left(x^{2} - 8\nu\right)^{1/4}} \cdot \exp\left(+i\frac{\pi}{4}\right) \end{split}$
X.– XI.– XII.	<i>A</i> ₂ ⁻	$(v + \Delta v) \ge C_v > 0;$ $\frac{(x + \Delta x)^2}{8(v + \Delta v)} \sim 1;$ $(x + \Delta x) \ge C_x > 0;$ $\frac{x^2}{8v} = \delta = 1$	$\begin{split} \tilde{D}_{\nu,\Lambda}^{+}(x) &\approx \\ &\approx e^{i\Theta} \cdot e^{\Gamma} \times \\ &\times \left\{ W_{2}(-\lambda) l_{1} \cdot \Lambda^{-1/3} + \\ &+ W_{2}^{\prime}(-\lambda) l_{2} \cdot \Lambda^{-2/3} \right\} \\ &(3 \text{десь} \\ &W_{2}(\lambda) \text{ И} \\ &W_{2\lambda}^{\prime}(\lambda) - \\ &\text{вторая} \\ &\varphi \text{ункция} \\ &\Im \Bar{u} \text{ и её} \\ &\text{производная,} \\ &\text{определен-} \\ &\text{ные} \\ &\varphi \text{ормулами} \\ &u \ [12]) \end{split}$	$\begin{split} &\Theta \approx \Lambda \left\{ \left(-\frac{3}{16} x^2 + v \cdot \ln\left(\frac{x}{4}\right) \right) - \frac{x}{4} \cdot \Delta x + \ln\left(\frac{x}{4}\right) \cdot \Delta v \right\} \\ &\Gamma \approx -\Lambda \pi \cdot \left(v + \Delta v\right) \\ &\lambda \approx \Lambda^{2/3} \left[\frac{x^{1/3}}{2} \Delta x - 2 \cdot x^{-2/3} \cdot \Delta v \right] \\ &l_1 \approx \frac{\sqrt{\pi}}{x^{1/6}} = \frac{\sqrt{\pi}}{2^{1/4} v^{1/12}} \\ &l_2 \approx 0 \\ &(\text{расчетные формулы приведены} \\ &для линейного приближения в \Theta, \Gamma и \lambda, \\ &\text{«нулевого» приближения} \\ &в коэффициентах l_1 и l_2 метода локальной асимптотики) \end{split}$

Математическое моделирование

_

а контур γ начинается в секторе комплексной плоскости переменной t, определенном условием $\frac{5}{4}\pi \le \arg(t) \le \pi$, и уходит на бесконечность в секторе комплексной плоскости, определенном условием: $0 \le \arg(t) \le \frac{1}{4}\pi$.

Соотношение (16) позволяет связать свойства асимптотических представлений функций (2) и (17).

IV. Заключение

Представленные асимптотические разложения функции Вебера – Эрмита (1), (2) позволяют исследовать целый класс волновых задач, в которых используется параболическая модель профиля неоднородности, пространственные масштабы которой существенно превышают длину волны, например: оптоволоконный канал, ионосферный слой и др. В частности, удается получить простые формулы для расчета волновых полей, формирующихся в неоднородной среде, с учетом эффектов частичного отражения волн от таких неоднородностей, дифракционного захвата в неоднородный канал, дифракционной деградации волноводных структур.

Литература

1. Абрамовиц М., Стиган И. Справочник по специальным функциям. С формулами, графиками и математическими таблицами. – М. : Наука, 1979. – 830 с.

2. Градитейн И.С., Рыжик И.М. Таблицы интегралов, сумм, рядов и произведений. – 7-е изд. – СПб. : БХЗ-Петербург, 2011. – 1232 с.

3. *Киселев О.М.* Зоопарк чудовищ или знакомство со специальными функциями. – УФА : БашГУ, 2000. – 104 с.

4. Ипатов Е.Б., Лукин Д.С., Палкин Е.А. Численные методы расчета специальных функций волновых катастроф // Журнал вычислительной математики и математической физики. – 1985. – Т. 25. – № 2. – С. 224–236.

5. Крюковский А.С., Лукин Д.С., Палкин Е.А. Краевые и угловые катастрофы в задачах дифракции и распространения волн. – Казань : КазАИ, 1988. – 199 с.

6. Крюковский А.С., Лукин Д.С., Палкин Е.А, Растягаев Д.В. Волновые катастрофы – фокусировки в дифракции и распространении электромагнитных волн // Радиотехника и электроника. – 2006. – Т. 51. – № 10. – С. 1155–1192.

7. *Крюковский А.С.* Равномерная асимптотическая теория краевых и угловых катастроф. – М. : РосНОУ, 2013. – 368 с.

8. *Dingle, R.B.* Asymptotic expansions: their derivation and interpretation. – NY : Acad. Press, 1973. – 522 p.

9. Палкин Е.А., Петрович А.А. Специальные асимптотики функций Вебера – Эрмита и их применение в задачах распространения волн // VII Всероссийские Армандовские чтения : материалы Всероссийской научной конференции «Современные проблемы дистанционного зондирования, дифракции и распространения радиоволн», Муром, 27–29 июня 2017 г. Секция 1. Теоретические и прикладные вопросы распространения и дифракции радиоволн. – Муром, 2017. – С. 55–59.

10. Арнольд В.И., Варченко А.Н., Гусейн-Заде С.М. Особенности дифференцируемых отображений II. Монодромия и асимптотики интегралов. – М. : Наука, 1984. – 334 с.

11. Oldham, K.B., Myland, J.C., Spanier J. An atlas of functions. – Изд. 2-е. – Springer, 2008. – 748 с.

12. Бабич В.М., Булдырев В.С. Асимптотические методы в задачах дифракции коротких волн. Метод эталонных задач. – М. : Наука, 1972. – 456 с.

13. Палкин Е.А. Использование методов волновой теории катастроф для равномерного описания эффекта Стокса в асимптотиках однократных интегралов // IV Между-

народная научно-техническая конференция «Распространение и дифракция электромагнитных волн в неоднородных средах» : тезисы докладов. – М. : Изд. МГТУ ГА, 1994. – С. 8–10.

14. *Palkin, E.A.* Oscillatory integrals uniform asymptotics for wave fields description near the Stokes sets // Proceedings of the 1995 international symposium on electromagnetic theory, St. Petersburg, Russia, May 23–26, 1995. – St. Petersburg St. Univ, 1995. – P. 714–716.

15. *Pearcey, T.* The structure of an electromagnetic field in the neighborhood of a cusp of a caustic // Philos. Mag. – 1946. – V. 37. – P. 311–317.

References

1. Abramovits, M., Stigan, I. Spravochnik po spetsial'nym funktsiyam. S formulami, grafikami i matematicheskimi tablitsami. – M. : Nauka, 1979. – 830 s.

2. *Gradshteyn, I.S., Ryzhik, I.M.* Tablitsy integralov, summ, ryadov i proizvedeniy. – 7-e izd. – SPb. : BKHZ-Peterburg, 2011. – 1232 s.

3. *Kiselev, O.M.* Zoopark chudovishch ili znakomstvo so spetsial'nymi funktsiyami. – UFA : BashGU, 2000. – 104 s.

4. *Ipatov, E.B., Lukin, D.S., Palkin, E.A.* Chislennye metody rascheta spetsial'nykh funktsiy volnovykh katastrof // Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki. $-1985. - T. 25. - N_{2} 2. - S. 224-236.$

5. *Kryukovskiy, A.S., Lukin, D.S., Palkin, E.A.* Kraevye i uglovye katastrofy v zadachakh difraktsii i rasprostraneniya voln. – Kazan' : KazAI, 1988. – 199 s.

6. Kryukovskiy, A.S., Lukin, D.S., Palkin, E.A, Rastyagaev, D.V. Volnovye katastrofy – fokusirovki v difraktsii i rasprostranenii elektromagnitnykh voln // Radiotekhnika i elektronika. – 2006. – T. 51. – \mathbb{N} 10. – S. 1155–1192.

7. *Kryukovskiy, A.S.* Ravnomernaya asimptoticheskaya teoriya kraevykh i uglovykh katastrof. – M. : RosNOU, 2013. – 368 s.

8. *Dingle, R.B.* Asymptotic expansions: their derivation and interpretation. – NY : Acad. Press, 1973. – 522 p.

9. Palkin, E.A., Petrovich, A.A. Spetsial'nye asimptotiki funktsiy Vebera – Ermita i ikh primenenie v zadachakh rasprostraneniya voln // VII Vserossiyskie Armandovskie chteniya : materialy Vserossiyskoy nauchnoy konferentsii "Sovremennye problemy distantsionnogo zondirovaniya, difraktsii i rasprostraneniya radiovoln", Murom, 27–29 iyunya 2017 g. Sektsiya 1. Teoreticheskie i prikladnye voprosy rasprostraneniya i difraktsii radiovoln. – Murom, 2017. – S. 55–59.

10. Arnol'd, V.I., Varchenko, A.N., Guseyn-Zade, S.M. Osobennosti differentsiruemykh otobrazheniy II. Monodromiya i asimptotiki integralov. – M. : Nauka, 1984. – 334 s.

11. Oldham, K.B., Myland, J.C., Spanier J. An atlas of functions. – Изд. 2-е. – Springer, 2008. – 748 с.

12. *Babich, V.M., Buldyrev, V.S.* Asimptoticheskie metody v zadachakh difraktsii korotkikh voln. Metod etalonnykh zadach. – M. : Nauka, 1972. – 456 s.

13. *Palkin, E.A.* Ispol²zovanie metodov volnovoy teorii katastrof dlya ravnomernogo opisaniya effekta Stoksa v asimptotikakh odnokratnykh integralov // IV Mezhdunarodnaya nauchno-tekhnicheskaya konferentsiya "Rasprostranenie i difraktsiya elektromagnitnykh voln v neodnorodnykh sredakh": tezisy dokladov. – M. : Izd. MGTU GA, 1994. – S. 8–10.

14. *Palkin, E.A.* Oscillatory integrals uniform asymptotics for wave fields description near the Stokes sets // Proceedings of the 1995 international symposium on electromagnetic theory, St. Petersburg, Russia, May 23–26, 1995. – St. Petersburg St. Univ, 1995. – P. 714–716.

15. *Pearcey, T.* The structure of an electromagnetic field in the neighborhood of a cusp of a caustic // Philos. Mag. – 1946. – V. 37. – P. 311–317.