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CybORG: улучшение среды для эффективного обучения 
агентов кибербезопасности

Аннотация. В представленной научной статье исследуется процесс разработки и апробирования 
сценария для тренировочных окружений в области автоматизированной защиты информации (англ. 
Automated Cyber Defence, ACD) с использованием обучения с подкреплением (англ. Reinforcement 
Learning, RL). Основное внимание уделено применению алгоритма Proximal Policy Optimization 
(PPO) для обучения агента в среде CybORG, анализу эффективности предложенного подхода, вы-
полнению исправлений критических недостатков в функциональности тренировочного окружения 
CybORG. Представлены результаты тестирования сценария, выявлены его слабые стороны и пред-
ложены доработки, направленные на оптимизацию процесса обучения. Продемонстрированы резуль-
таты внесенных изменений, значительно сказавшихся на эффективности работы с тренировочным 
окружением CybORG. Внесены изменения в тренировочное окружение CybORG, что позволило 
улучшить производительность и удобство использования. Проведенный анализ демонстрирует, что 
предложенные модификации способствуют более эффективному обучению агентов и упрощают 
интеграцию новых сценариев. На основе полученных результатов сформулированы рекомендации 
по дальнейшему совершенствованию тренировочных окружений автономных киберопераций (англ. 
Autonomous Cyber Operation Gyms, ACOG).
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Введение
Современные кибератаки становятся все более сложными и многоступенчатыми, 

включая в себя различные цели и пути атаки, что требует разработки продвинутых мето-
дов защиты [1]. Одним из перспективных направлений является использование обучения 
с подкреплением (RL) для создания автономных агентов, способных противостоять та-
ким атакам. Однако эффективность упомянутых агентов во многом зависит от качества 
тренировочных окружений, которые должны балансировать между реализмом, масшта-
бируемостью и эффективностью [2].

Тренировочные окружения, о которых идет речь в статье, являются частью автомати-
зированной информационной защиты, именуются тренировочными окружениями авто-
номных киберопераций и предлагают способы улучшения общего уровня защищенности 
системы [3]. Тренировочные окружения представляют собой функционал для симуляции 
определенного инцидента безопасности, с их помощью можно моделировать этот инци-
дент неограниченное количество раз [4], тем самым получая политику, с помощью кото-
рой можно эффективно минимизировать потери или предотвратить атаку.

В данной статье рассматривается апробирование разработанного сценария для тре-
нировочного окружения CybORG [5], с помощью обучения агента [6] с использованием 
алгоритма PPO. Рассматриваются результаты работы по внедрению нового сценария и на 
его основе формируются краткосрочные доработки [7]. 

Цель работы – оценить эффективность сценария и предложить пути оптимизации 
процесса его добавления.

Статья содержит следующие разделы: «Методы «Результаты», «Обсуждение» и «За-
ключение». В разделе «Методы» будет приведена информация по обучению с подкре-
плением, продемонстрирован процесс внедрения сценария и процесс внедрения исправ-
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лений CybORG. Раздел «Результаты» содержит результаты работы, отражающие метри-
ки обучения агента и метрики по улучшению фреймворка CybORG. В разделе «Обсуж-
дение» приведены результаты обучения агента в новом сценарии, недостатки процесса 
внедрения собственного сценария, процесс анализа, вывода и реализации улучшений для 
существенной доработки указанного процесса. В разделе «Заключение» указана краткая 
выжимка по проделанному в статье исследованию.

Методы
Демонстрация процесса внедрения обучения с помощью алгоритма PPO [1] требует 

также проведения анализа используемых в таком окружении моделей и алгоритмов, по-
зволяющих применять методы обучения с подкреплением. Обучение с подкреплением – 
это раздел машинного обучения, в котором агент обучается оптимальному поведению че-
рез взаимодействие со средой, максимизируя накопленное вознаграждение. В последние 
годы RL активно развивается, охватывая более сложные сценарии, включая многоагент-
ные системы (Multi-Agent Reinforcement Learning, MARL) и игры с неполной информа-
цией (Stochastic Games with Imperfect Information).

Для определения соответствия полученных в тренировочных окружениях стратегий агентов 
реальным ситуациям следует рассмотреть ключевые аспекты RL, MARL и стохастических игр с 
неполной информацией и дополнительно проанализировать современные алгоритмы и сложно-
сти, связанные с масштабируемостью, координацией и обучением в условиях неопределенности.

Обучение с подкреплением
В наиболее простом случае обучение с подкреплением формулируется как марковский 

процесс принятия решений (см. Рисунок 1), заданный кортежем ( , , , ,S A P R γ ) [8],
где S  – множество состояний;

A  – множество действий;
( ' | , )P s s a  – функция переходов;
( , , ')R s a s  – функция вознаграждения;

[0;1]γ ∈  – коэффициент дисконтирования. 

Рисунок 1. Взаимодействие агента и среды 
Источник: здесь и далее рисунки выполнены авторами.
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Цель агента – найти стратегию : S Aπ → , максимизирующую ожидаемую дисконти-
рованную награду [8]:

( )1
0

( ) , , .t
t t t

t
V s R s a s

∞
π

π +
=

 
= Ε γ 

 
∑

Основными алгоритмами для решения задач обучения с подкреплением являются 
Q-learning, Policy Gradient, Deep Q-Networks (DQN). 

Q-learning – алгоритм обучения на основе значений, использующий таблицу 
Q-значений для оценки полезности действий в состояниях.

Формула обновления Q-значений [9]: 

'
( , ) ( , ) max ( ', ') ( , )

a
Q s a Q s a R Q s a Q s a ← +α + γ −  

,

где ( , )Q s a  – текущее значение действия a  в состоянии s ;
α  – скорость обучения (learning rate);
R  – награда, полученная за переход в состояние 's ;
γ  – коэффициент дисконтирования (учитывает важность будущих наград); 

'
max ( ', ')

a
Q s a  – максимальное Q-значение для следующего состояния s’.

Особенности:
• использует «жадную» стратегию (greedy policy) для выбора действий;
• гарантированно сходится к оптимальной политике при достаточном количестве ите-

раций (в табличном случае);
Policy Gradient – алгоритм прямой оптимизации политики, где параметры политики 

обновляются в направлении увеличения ожидаемой награды.
Формула градиента стратегии [9]

( ) log ( | ) ( , )J a s Q s aπ
θ π θ θ ∇ θ = Ε ∇ π π  ,

где ( )J θ  – целевая функция (ожидаемая награда);
( | )a sθπ  – вероятностная стратегия;

( , )Q s a  – функция ценности действия.
Особенности:
• работает в непрерывных и дискретных пространствах действий; 
• может страдать от высокой дисперсии градиентов (решается методами Actor-Critic).
Deep Q-Networks (DQN) – гибрид Q-learning и глубоких нейросетей, где Q-функция 

аппроксимируется нейросетью [9].
Ключевые модификации:
• Experience Replay – сохраняет переходы ( , , , ')s a r s  в буфер и обучается на случайных 

батчах для уменьшения корреляции между данными;
• Target Network – используется отдельная сеть для расчета целевых значений ( ', '),Q s a  

которая обновляется периодически.
Формула функции потерь [9]:

a
2

( , , , ') rg~ '
( ) ( max ( , ) ( , ; )s a r s D ta etL E r Q s a Q s a 

 ′


′θ = γ − θ


+ ,

где D  – буфер воспроизведения опыта.
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Особенности:
• устойчивость к нестабильности обучения за счет Experience Replay и Target Network;
• применяется в задачах с большими пространствами состояний (например, Atari).
Однако в реальных сценариях защиты компьютерных сетей использование всего одно-

го агента в качестве лица, принимающего решение, является серьезным ограничением и 
не позволяет рассматривать несколько автономных узлов или действия одновременно как 
лица, защищающего компьютерную систему, так и лица, нападающего на него. 

Многоагентные марковские процессы принятия решений (MARL) расширяют мар-
ковские процессы принятия решений на случай нескольких агентов, взаимодействующих 
в общей среде. Основные модели представлены следующими ситуациями [10]:

• совместные игры (Cooperative MARL) – агенты максимизируют общее вознаграж-
дение (автономные подсети и узлы);

• конкурентные игры (Competitive MARL) – агенты имеют противоположные интересы 
(например, игры с нулевой суммой для злоумышленника и администратора безопасности);

• смешанные игры (Mixed) – сочетание кооперации и конкуренции.
MARL может быть представлен как стохастическая игра (Markov Game) [10]:

1 1, ,{ , {} , } ,N N
i i i iN S A P R= = γ ,

где N  – число агентов;

iA  – действия i -го агента;

iR  – его награда.
Основные подходы в таких моделях:
• Independent Q-learning (IQL) – каждый агент обучается как одиночный RL-агент (не 

учитывает других агентов);
• Centralized training with decentralized execution (CTDE) – обучение с централизо-

ванным критиком (например, алгоритм MADDPG);
• Nash Q-learning – поиск равновесия Нэша в стратегиях.
Необходимо отметить, что в реальных сценариях защиты компьютерных сетей аген-

там недоступна полная информация о состоянии компьютерной системы. Например, си-
ний агент может не знать о скрытом канале управления, используемом злоумышленни-
ком, а красному агенту может быть недоступна для исследования вся сеть, или он может 
получить доступ к учетной записи пользователя с ограниченными правами. Стохастиче-
ская игра с неполной информацией (Partially Observable Stochastic Game, POSG) – это 
обобщение МППР и многоагентного обучения с подкреплением, где агенты наблюдают 
лишь часть состояния. Формально [10]

1 1 1, ,{ ,{ } , ,{ } ,}N N N
i i i i i iN S A O P R= = = γ ,

где iO   – наблюдения i -го агента.
Такая модель характеризуется проблемой нестационарности: стратегии других аген-

тов меняются, нарушая марковское свойство. К основным методам решения относятся:
• рекуррентные стратегии (использование памяти, например, DRQN);
• Belief state estimation (оценка скрытого состояния через байесовские методы).
Proximal Policy Optimization (PPO) – это алгоритм обучения с подкреплением, кото-

рый оптимизирует стратегию агента, минимизируя отклонение от предыдущей полити-
ки. Это позволяет достичь стабильного обучения даже в сложных средах [11].
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Основные шаги алгоритма PPO:
1)  сбор данных: агент взаимодействует со средой, собирая траектории (состояния, 

действия, награды);
2) оценка преимуществ: используется метод Generalized Advantage Estimation (GAE) 

для оценки преимуществ действий;
3) оптимизация политики: политика обновляется с учетом ограничения на изменение, 

что предотвращает резкие отклонения.
Формула оптимизации PPO [11]

ˆ ˆ( ) [min( ( ) , ( ( ),1 ,1 ) ]CLIP
t t t t tL E r A clip r Aθ = θ θ − +  ,

где ( )tr θ  – отношение вероятностей действий старой и новой политик;
ˆ

tA  – оценка преимущества;
  – параметр, ограничивающий изменение политики.

Интеграция PPO в CybORG
Для интеграции обучения на основе алгоритма PPO был выбран сценарий, разработан-

ный и внедренный в работе [7] в тренировочное окружение CybORG. Такой подход по-
зволяет верифицировать новый сценарий и проверить основные функции обучения в нем. 

Новый сценарий состоит из 9 подсетей, в которых расположены различные хосты – 
приложения, мониторинга и СУБД [7]. Наличествующие агенты внутри сети обучаются 
посредством многократного запуска обучения – красный агент (злоумышленник), синий 
агент (защитник), зеленый агент (пользователи). Дополнительные исследования по рас-
смотрению тренировочного окружения CybORG также подчеркивают его пригодность к 
внедрению новых сценариев [6; 12; 13] и выявляют существенные недостатки на различ-
ных стадиях работы с ним [14].

Сценарий был реализован в виде Python-кода, интегрированного в среду CybORG. 
Для проверки корректности работы были проведены тестовые запуски, включая провер-
ку сетевых связей, функциональности агентов и корректной работы основных функций 
обучения с подкреплением.

Модификация фреймворка CybORG
Используя показанную в прошлой статье [7] работу, можем реализовать следующий 

список доработок тренировочного окружения CybORG, которые качественно и количе-
ственно улучшат упомянутый фреймворк. Список доработок указан в Таблице.

Таблица 

Модификации CybORG

Доработка Основания для ее выбора Позволяет получить
Создание графического интер-
фейса для функционала внедре-
ния сценария в CybORG

Нет нативного функционала 
внедрения нового сценария

С помощью GUI процесс внедрения 
нового сценария происходит без руч-
ного редактирования кода

Избавление от переопределе-
ния данных в смежных модулях 
CybORG

После внедрения сценария 
в ядре CybORG переопределя-
ются данные

Обучение может быть запущено на 
любом новом сценарии без необходи-
мости ручного исправления
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Указанные доработки основаны на процессе внедрения собственного сценария, опи-
санного в работе [7]. Его реализация подсветила моменты в этом процессе, которые не-
обходимо исправить для более эффективной и массовой работы с тренировочным окру-
жением CybORG. Рассмотрим выполненные доработки подробнее.

Реализация графического интерфейса покрывает следующие процессы:
• написание Python-кода с помощью использования шаблона Jinja2 с инфраструкту-

рой сценария;
• написание Python-кода с помощью использования шаблона Jinja2 по связям внутри 

новой сети;
• выбор различных типов хостов и подсетей;
• формирование файла, содержащего всю необходимую информацию о новом сценарии.
В текущем формате без использования графического интерфейса добавление подоб-

ного нового сценария сопряжено с постоянным написанием кода и большой тратой вре-
мени (около 20 часов), поэтому внедрение графического интерфейса GUI является важ-
ной доработкой для эффективной работы с тренировочным окружением CybORG. 

Реализация предложенной доработки выполнена с помощью Python-модуля PyQT. 
Заполнение файла сценария использует технологию шаблона Jinja2, что позволяет по-
лучить от пользователя с помощью интерфейса параметры сценария и сохранить их в 
JSON-формате, после чего шаблонным парсером создать полноценный файл сценария. 
По итогам получения данных от пользователя на экране появится основная информа-
ция о сети, содержащихся в ней сегментах подсетей и хостах, сетевых доступах между 
подсетями.

С помощью шаблона Jinja2 реализуется формирование файла сценария на языке 
Python данными от пользователя. Такой подход оптимизирует создание и внедрение но-
вого сценария для последующего обучения агента в нем.

Доработка, связанная с переопределением данных в других модулях фреймворка 
CybORG, направлена на перенос данных нового сценария в смежные модули, так как из-
начально эти данные присутствовали в виде константы, что нарушает принцип постро-
ения ПО – DRY. Передача таких данных, как имена подсетей, количество хостов в них и 
запущенные процессы в модуль «Враппер», значительно снизит количество ошибок при 
работе с фреймворком CybORG.

В качестве реализации указанного рефакторинга кода используется стандартный 
функционал классов в языке Python. Таким образом, полученные от пользователя данные 
корректно передаются в модуль «Враппер», где они без переопределения используются в 
дальнейших вычислениях. В связи с этим сокращается число ошибок при работе пользо-
вателя с фреймворком CybORG при внедрении нового сценария. Дополнительно введен-
ная доработка приводит код ПО к соответствию принципам DRY и SOLID.

Результаты
Проведенная работа позволяет сделать следующие выводы относительно обуче-

ния агента в новой инфраструктуре и общих улучшений тренировочного окружения 
CybORG.

В части оценки эффективности сценария:
• сценарий успешно интегрирован в CybORG, агенты корректно взаимодействуют со 

средой, сценарий позволяет успешно обучать агентов, что показывают Рисунки 2 и 3;
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• наблюдается реалистичное поведение красного и синего агентов, что подтверждает 
адекватность моделирования и успешность обучения.

Рисунок 2. Результаты тестирования агента с обученной стратегией PPO и случайного агента

Рисунок 3. Результаты обучения PPO в новом сценарии
Результатами обучения с PPO можно считать следующие положения:
• красный агент научился эффективно использовать уязвимости, такие как перебор па-

ролей и эксплуатация сервисов;
• синий агент разработал стратегии обнаружения и блокировки атак, включая анализ 

сетевого трафика и изоляцию скомпрометированных хостов;
• метрики – средняя награда агента увеличилась на 40 % после 1000 эпизодов обучения.
По сравнению с алгоритмами DQN и Policy Gradient, особенно в условиях частичной 

наблюдаемости (POSG), PPO показал лучшую стабильность и скорость обучения.
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Добавление графического интерфейса GUI, с помощью которого возможно реализо-
вать внедрение нового сценария, значительно ускоряет упомянутый функционал, делает 
его более эргономичным и эффективным [15]. Для объективного сравнения необходимо 
указать метрики, которые количественно улучшила данная доработка.

Определим количество времени, требуемое на разработку и внедрение новых сцена-
риев без использования GUI при помощи метрики heatmap с сервиса GitHub, количество 
которых равно 18. Примерное время, затраченное на каждый из сценариев, будем считать 
около 60 минут. Без GUI этот процесс занимает около 1080 минут. Обратим внимание, 
что среди 18 коммитов наличествуют и те, которые были направлены на исправление и 
тестирование корректности работы, ошибки были вызваны человеческим фактором. Сле-
довательно, можно утверждать, что внедрение графического интерфейса дополнительно 
минимизирует объем ошибок при работе и время на их исправление.

При использовании GUI время на внедрение нового сценария варьируется от 4 до 
13 минут в зависимости от объема среды. Будем считать, что среднее время для внедре-
ния сценария с GUI составляет 9 минут. 

Таким образом, внедренная доработка по реализации графического интерфейса уско-
ряет процесс внедрения нового сценария на 99,17 %, что показано на Рисунке 4.

Рисунок 4. Эффективность графического интерфейса
Доработка, связанная с переопределением данных в других модулях фреймворка 

CybORG, аналогичным образом ускоряет процесс внедрения нового сценария, делая его 
эффективнее.

Для оценки эффективности воспользуемся аналогичной вышеупомянутой структу-
рой. Таким образом, число коммитов для локализации и исправления ошибки равно 10, 
тем самым затраченное время составляет 600 минут. При этом после внесения изменений 
в код проекта затраченное время на потенциальное исправление ошибки будет составлять 
около 60 минут. Это объясняется тем, что все необходимые значения локализованы и ука-
заны пользователю. Получим следующую метрику для учета эффективности указанной 
доработки (см. Рисунок 5).
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Рисунок 5. Эффективность исправления ошибки
Проведенная работа и ее результаты свидетельствуют о высокой эффективности вне-

дренных доработок и эффективном обучении агента в новой инфраструктуре. Последнее 
демонстрирует, что тренировочные окружения, обладающие определенным функциона-
лом, можно использовать в качестве инструмента информационной безопасности для ана-
лиза и построения политики защиты и увеличения уровня общей защищенности системы.

Обсуждение
В качестве дальнейших шагов в следующих работах необходимо рассмотреть основ-

ные ключевые факторы успешности и ограничения в текущем состоянии работы.
Основные факторы успешности:
• качество сценария – реалистичность сетевой топологии и правил взаимодействия во 

фреймворке CybORG;
• настройка PPO – оптимальный выбор гиперпараметров и функции вознаграждения 

для обучения;
• интерпретируемость – возможность анализа действий агента для дальнейшей опти-

мизации обучения;
• оптимальность доработок – реализованные доработки, направленные на основные 

критические нюансы работы фреймворка CybORG;
• эргономичность тренировочного окружения – графический интерфейс делает более 

доступным и простым в освоении новый инструмент информационной безопасности.
Ограничения:
• вычислительные ресурсы – обучение требует значительных мощностей;
• разрыв в реальности – необходимость валидации обучения агента на реальных данных;
• эффективность доработок – несмотря на выполненные доработки, во фреймворках 

всё еще присутствуют недостатки, которые не позволяют их эффективно использовать.
Рекомендации:
•  доработка сценария – добавление динамических угроз и уязвимостей, увеличение 

параметров на хостах;
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• улучшение PPO – использование иерархического PPO для сложных задач;
• интеграция с SIEM – для повышения реалистичности и валидации стратегий;
• исправление ключевых недостатков – проведение глобального рефакторинга трени-

ровочного окружения.
Заключение

Апробирование разработанного сценария в CybORG с использованием алгоритма 
PPO подтвердило его эффективность для моделирования атак и защиты в компьютерных 
сетях. PPO продемонстрировал высокую стабильность и способность агентов обучаться 
сложным стратегиям. Исправление ключевых недостатков позволило значительно сокра-
тить время и уменьшить количество ошибок при внедрении нового сценария.

Дальнейшие исследования будут направлены на поиск решения для исправления дол-
госрочных доработок путем глобального рефакторинга тренировочного окружения, за-
трагивая в том числе интеграцию с реальными системами информационной безопасно-
сти для ускоренной проверки полученной политики.
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